

polymer communications

Chemical synthesis of high molecular weight poly(3-hydroxybutyrate-co-4-hydroxybutyrate)

Yoji Hori*, Akio Yamaguchi and Toshimitsu Hagiwara

Central Research Laboratory, Takasago International Corporation, 1-4-11, Nishi-Yawata, Hiratsuka, Kanagawa 254, Japan

(Received 10 April 1995; revised 22 May 1995)

The reaction of optically active β -butyrolactone with γ -butyrolactone in the presence of a distannoxane complex as a catalyst at 100° C yielded a high molecular weight poly(3-hydroxybutyrate-co-4-hydroxybutyrate).

(Keywords: distannoxane; ring-opening copolymerization; poly(3-hydroxybutyrate-co-4-hydroxybutyrate))

Introduction

A wide variety of micro-organisms are known to produce intracellular energy and carbon storage products which have been generally described as being poly(R)-3-hydroxyalkanoates] (P(3HA)s)¹⁻³. Imperial Chemical Industries (ICI) has developed a controlled fermentation process for the production of copolyesters of (R)-3-hydroxybutyrate and (R)-3-hydroxyvalerate $[P(3HB-co-3HV)]^4$.

Doi et al. succeeded in the fermentation production of a new copolyester of (R)-3-hydroxybutyrate and 4-hydroxybutyrate [P(3HB-co-4HB)] (Scheme 1) (4HB content 0-82 mol%), by A. eutrophus from 4-hydroxybutyric and butyric acids^{5,6}.

In order to synthesize the P(3HB-co-4HB) by a chemical method, the ring-opening polymerization of (R)- β -butyrolactone [(R)- β -BL] with γ -butyrolactone (γ -BL, ring size 5) has to be carried out. In general, it is impossible to obtain a high molecular weight poly(4-hydroxybutyrate) [P(4HB)] by ring-opening polymerization of γ -BL, because of the small ring strain. Korte et al. successfully achieved the homopolymerization of γ -BL to yield P(4HB) with low molecular weight under special conditions, for example, under a pressure of 20 000 atm at 160°C (ref. 7). Kricheldorf et al. pointed out the low copolymerizability of γ -BL with other lactones by ring-opening polymerization 8 . Fukuzaki et al. reported the direct copolymerization of L-lactic acid with γ -BL in the

Scheme 1

absence of catalysts to afford low molecular weight poly(2-hydroxypropionate-co-4-hydroxybutyrate)^{9,10}.

Recently, we reported that the highly efficient ring-opening polymerization of (R)- β -BL 11,12 and copolymerization of (R)- β -BL with ϵ -CL 12,13 , δ -VL 12,13 , β -methyl- δ -valerolactone 12,13 , L-lactide 12,13 and (R)-3-methyl-4-oxa- δ -hexanolide 14 in the presence of distannoxane catalysts gave a new series of copolyesters and poly(ester ether)s of high molecular weights.

We thought that it was a challenging subject to synthesize P(3HB-co-4HB) which was easy to obtain by a fermentation method but was difficult to obtain by ring-opening copolymerization of (R)- β -BL with γ -BL.

Here we report the synthesis of P(3HB-co-4HB) with high molecular weight catalysed by 1-ethoxy-3-chloro-tetrabutyldistannoxane.

Experimental

Materials. 1-Ethoxy-3-chlorotetrabutyldistannoxane¹⁵ was prepared using the literature methods. The catalyst was dried *in vacuo* at 80°C for 20 h. (R)-β-Butyrolactone¹⁶ [(R)-β-BL, 92% enantio excess] and γ-BL were dried with CaH₂ and distilled under reduced pressure.

Measurements. Molecular weights of the polymers were determined by g.p.c. using a polystyrene calibration. Proton and carbon-13 nuclear magnetic resonance spectra were recorded on a Bruker AM-400 spectrometer. Calorimetric measurements (d.s.c.) of the polymers were carried out on a Shimadzu thermal analysis system over a temperature range of -50 to +200°C at heating and cooling rates of 10°C min⁻¹. The

^{*} To whom correspondence should be addressed

melting temperature $(T_{\rm m})$ was taken as the peak temperature of the melting endotherm (first run). The glass transition temperature $(T_{\rm g})$ was taken as the inflection point of the specific heat increment at the glass transition (second run).

Ring-opening copolymerization. (R)-β-BL (3.10 g, 36 mmol), γ-BL (0.34 g, 4 mmol), and 1-ethoxy-3-chlorotetrabutyldistannoxane (11.2 mg, 1×10^{-2} mmol) were heated in a 20 ml Shlenk tube at 100° C for 4 h. The resulting mixture was dissolved in trichloromethane and then was added to a mixture of diethyl ether and hexane (ratio 1:3) to afford the white solid of the P(3HB-co-6% 4HB) 3.29 g in 96% yield. 1 H n.m.r. (400 MHz, in CDCl₃): δ = 1.20–1.36 (m, 3H, CH₃ for 3HB unit), 1.88–2.00 (m, 2H, CH₂ for 4-hydroxybutanoate (4HB) unit), 2.31–2.42 (m, 2H, CH₂ for 4HB unit), 2.42–2.54 (m, 1H, CH₂ for 3HB unit), 4.05–4.18 (m, 2H, CH₂ for 4HB unit), and 5.20–5.33 (m, 1H, CH for 3HB unit).

Results and discussion

(R)- β -Butyrolactone polymerized with γ -BL to give P(3HB-co-4HB)s in the presence of a catalytic amount of 1-ethoxy-3-chlorotetrabutyldistannoxane (Table 1). The proton n.m.r. of these P(3HB-co-4HB)s showed a structure quite similar to that of a P(3HB-co-4HB) which was produced by bacteria⁵. When the feed molar ratio of the (R)- β -BL and γ -BL was 90:10, the P(3HB-co-6% 4HB) showed the maximum molecular weight $M_n = 96\,000$ (entry 2 in Table 1). The yields and molecular weights of P(3HB-co-4HB)s decreased with increasing feed ratio of γ -BL. The observed ratios of 4HB units in P(3HB-co-4HB)s increased with increasing feed ratio of γ -BL (Figure 1). The maximum ratio of 4HB units was 35% when the feed ratio of γ -BL was 90%. The elasticity of P(3HB-co-4HB)s increases as the percentage of the 4HB units increases.

Figure 2 illustrates the relationship of $T_{\rm m}$ and $T_{\rm g}$ values to 4HB percentage content of P(3HB-co-4HB)s and P(3HB). All $T_{\rm m}$ and $T_{\rm g}$ values are directly related to

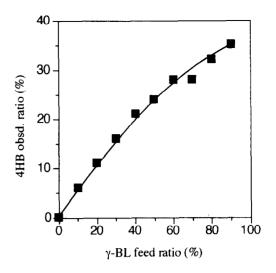


Figure 1 Relation between the feed ratio of $\gamma\text{-BL}$ and the observed composition of 4HB units

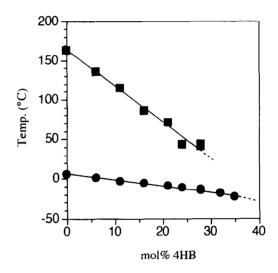


Figure 2 Relation of $T_{\rm m}$ (\blacksquare) and $T_{\rm g}$ (\bullet) values with composition of 4HB units

Table 1 Polymerization results of (R)- β -BL with γ -BL at 100° C⁴

Entry	Monomer (feed ratio)	Polymer (obsd ratio) ^b	$T_{\rm m}$ (°C)	$T_{\rm g}$ (°C)	$oldsymbol{M}_{\mathbf{w}}^c$	$oldsymbol{M_{n}^c}$	Yield (%)	$[\alpha]_{D}^{25}$ (c = 1, CHCl ₃)
1 d	(R)-β-BL	(100/0)	163	5.3	424 000	178 000	99	-1.6^{c}
2	(R)-β-BL/γ-BL (90/10)	(94/6)	135	0.8	156 000	96 000	96	-1.7
3	(80/20)	(89/11)	114	-3.6	108 000	64 000	95	-1.9
4	(70/30)	(84/16)	86	-6.0	120 000	72 000	81	-2.0
5	(60/40)	(79/21)	70	9.0	98 000	59 000	79	-2.2
6^f	(50/50)	(76/24)	43	-11.4	94 000	59 000	61	-2.1
7^f	(40/60)	(72/28)	41	-14.3	72 000	42 000	50	-2.0
$8^{f,g}$	(30/70)	(72/28)	43	-15.6	36 000	22 000	44	-1.5
9.f.g	(20/80)	(68/32)		-18.5	19 600	6 700	21	-2.2
$10^{f,g}$	(10/90)	(65/35)		-22.7	7 600	2 700	13	-1.7

^a Polymerization conditions: catalyst 1 × 10⁻² mmol; lactones 40 mmol; 4 h, no solvent was used

^b Determined by ¹H n.m.r. analysis

^c Determined by g.p.c. analysis, calibrated to a polystyrene standard

^d Catalyst 5×10^{-3} mmol

c = 0.25, CHCl₃

^f 16 h

^g Catalyst 2×10^{-2} mmol

the content of the 4HB unit. Thus, by increasing the 4HB content, polymers with both lower $T_{\rm m}$ and $T_{\rm g}$ values can be obtained. We have shown that the distannoxane catalyses the ring-opening polymerization of (R)- β -BL (entry 1 in Table 1) which proceeds by breaking the bond between the carbonyl carbon and oxygen atom of the (R)β-BL ring (acyl cleavage) with retention of the configuration¹¹. It is also considered that the copolymerization of (R)- β -BL with γ -BL proceeds by acyl cleavage with retention of the configuration because the decreases in $T_{\rm m}$ and $T_{\rm g}$ are not dramatic, and the optical rotation of polyesters shows negative values ranging from -1.5° to -2.2° .

Conclusion

It has been disclosed that the reaction of the (R)- β butyrolactone (92% ee) with γ-butyrolactone in the presence of a distannoxane catalyst at 100°C yielded the poly(3-hydroxybutyrate-co-4-hydroxybutyrate)s various contents of the 4HB unit. P(3HB-co-6% 4HB) showed the maximum molecular weight $(M_n = 96000)$. The P(3HB-co-4HB)s by the ring-opening polymerization showed a structure quite similar to that produced by bacteria.

References

- Lenz, R. W., Kim, B.-W., Ulmer, H. W. and Fritzshe, K. 'Novel Biodegradable Microbial Polymers' (Ed. E. A. Dawes), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990, p. 23
- Doi, Y. 'Microbial Polyesters', VCH Publishers, New York, 1990
- Brandl, H., Gross, R. A., Lenz, R. W. and Fuller, R. C. 'Advances in Biochemical Engineering/Biotechnology' (Eds T. K. Ghose and A. Fiechter), Springer, Berlin, 1990, Vol. 41, p. 77
- Holmes, P. A. Phys. Technol. 1985, 16, 32
- Kunioka, M., Nakamura, Y. and Doi, Y. Polym. Commun. 1988, 29, 174
- Kunioka, M. and Doi, Y. Macromolecules 1990, 23, 89
- Korte, F. and Gelt, W. Polymer Lett. 1966, 4, 685
- 8 Kricheldorf, H. R., Mang, T. and Jonte, J. M. Makromol. Chem. 1985, 186, 955
- Fukuzaki, H. and Aiba, Y. Makromol. Chem. 1989, 190, 1553
- Fukuzaki, H., Yoshida, M., Asano, M., Aiba, Y. and Kuma-10 kura, M. Eur. Polym. J. 1990, 26, 457
- 11 Hori, Y., Suzuki, M., Yamaguchi, A. and Nishishita, T. Macromolecules 1993, 26, 5533
- Hori, Y., Takahashi, Y., Yamaguchi, A. and Nishishita, T. 'Biodegradable Plastics and Polymers' (Eds Y. Doi and K. Fukuda),
- Elsevier, Amsterdam, 1994, p. 549 Hori, Y., Takahashi, Y., Yamaguchi, A. and Nishishita, T. 13 Macromolecules 1993, 26, 4388
- 14
- Hori, Y. and Yamaguchi, A. Macromolecules in press Okawara, R. and Wada, M. J. Organomet. Chem. 1963, 1, 81 15
- 16 Ohta, T., Miyake, T. and Takaya, H. J. Chem. Soc., Chem. Commun. 1992, 1725